Администрация муниципального округа города Кировска с подведомственной территорией Мурманской области

МУНИЦИПАЛЬНАЯ АВТОНОМНАЯ ОРГАНИЗАЦИЯ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ЦЕНТР ДЕТСКОГО ТВОРЧЕСТВА «ХИБИНЫ» ГОРОДА КИРОВСКА»

Принята на заседании педагогического совета от «<u>14</u>» <u>марта</u> 20<u>24</u> г. Протокол № <u>3</u>

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«КосмоЛаб»

Направленность: техническая Уровень программы: базовый Возраст учащихся: 13-15 лет Срок реализации: 1 год (144 часа)

> Автор разработчик: Маргаритов Михаил Андреевич, педагог ДО

г. Кировск 2024 г.

ОГЛАВЛЕНИЕ

І.КОМПЛЕКС ОСНОВЫХ ХАРАКТЕРИСТИК ДОПОЛНИТЕЛЬНОИ	2
ОБЩЕРАЗВИВАЮЩЕЙ ПРОГРАММЫ	
1.1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	
1.2. ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ	4
2.1. СОДЕРЖАНИЕ ПРОГРАММЫ	5
1.3.1 УЧЕБНЫЙ ПЛАН	5
1.3.2 СОДЕРЖАНИЕ УЧЕБНОГО ПЛАНА	6
1.4 ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ	8
II. КОМПЕКС ОРГАНИЗАЦИОННО ПЕДАГОГИЧЕСКИХ УСЛОВИЙ РЕАЛИЗАЦИИ ПРОГРАММЫ	9
2.1 КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК	9
2.2. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ	9
2.3. ФОРМЫ АТТЕСТАЦИИ/КОНТРОЛЯ	10
2.4. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ	10
2.5. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ	11
2.6. ВОСПИТАТЕЛЬНАЯ РАБОТА	2
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	14
Литература для педагога:	14
Литература для обучающихся:	14
ПРИЛОЖЕНИЕ 1	5
Календарный учебный график реализации программы «КосмоЛаб» на 2024 – 2025 учебн	ный 15
200	רו

І.КОМПЛЕКС ОСНОВЫХ ХАРАКТЕРИСТИК ДОПОЛНИТЕЛЬНОЙ ОБЩЕРАЗВИВАЮЩЕЙ ПРОГРАММЫ

1.1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Обоснование необходимости ДОП в содержании дополнительного образования.

Программа предназначена для обучающихся, интересующихся новыми техническими достижениями, развитием в себе качеств, присущих творческой личности.

Формирует устойчивый интерес детей и подростков к техническому творчеству, помогает в нахождении любимого дела, выбора будущей профессии и жизненного пути.

Направленность (профиль) программы: техническая.

Тип программы: дополнительная общеразвивающая программа.

Уровень программы: базовый

Настоящая программа разработана в соответствии с нормативно-правовыми документами:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
- Распоряжение Правительства Российской Федерации от 31 марта 2022 года № 678-р «Концепция развития дополнительного образования детей до 2030 года»;
- Приказ Министерства просвещения РФ от 9 ноября 2018 г. N 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Письмо Министерства образования и науки Российской Федерации от 18.11.2015 №09-3242 «О направлении информации» вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- «Методические рекомендации по разработке разноуровневых программ дополнительного образования ГАОУ ВО «МГПУ» АНО ДПО «Открытое образование»;
- Постановление Главного государственного санитарного врача Российской Федерации от 28.09.2020 №28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- Постановление Главного государственного санитарного врача Российской Федерации от 28.01.2021 №2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»;
- Положение о структуре, порядке разработки и утверждения дополнительных общеразвивающих образовательных программ МАОДО «ЦДТ «Хибины» г. Кировска.

Актуальность данной программы заключается в следующих возможностях:

Развитие космической индустрии: В настоящее время наблюдается активное развитие космической индустрии. Организации и компании по всему миру занимаются разработкой новых космических технологий, миссий и исследований. Программа обучения в области космофизики подготавливает специалистов, готовых принимать участие в этих инновационных проектах.

Исследование космического пространства: Программа обеспечивает обучающихся знаниями о фундаментальных принципах физики, астрономии и космических технологиях, позволяя им вносить вклад в текущие и будущие космические исследования.

Повышение образовательного уровня в сфере STEM: Программа акцентирует внимание на предметах STEM (наука, технологии, инженерия и математика), что является приоритетным направлением в образовательной политике. Обучение космофизике стимулирует интерес к науке, развивает аналитическое мышление и подготавливает новое поколение профессионалов для работы в высокотехнологичных областях.

Отличительные особенности программы является то, что основу образовательной программы «КосмоЛаб» положен принцип интеграции теоретического обучения с процессом практической исследовательской, самостоятельной деятельности обучающихся. Программой предусматривается выполнение реальных заданий по практической работе в соответствии с теорией, возможность увидеть результаты своего труда обучающимися.

Новизна программы заключается в интеграции наук - объединение физики, астрономии и космических технологий предоставляет обучающимся уникальный интегрированный взгляд на космос, расширяя горизонты их понимания.

Адресат программы — обучающиеся старших классов не имеющий специальных навыков. На занятия допускаются все записавшиеся обучающиеся, обязующиеся выполнять правила поведения и техники безопасности на занятиях. На обучение принимаются обучающиеся 13-15 лет.

Объем программы – 144 часа

Формы организации образовательного процесса

На занятиях используется индивидуально-групповая форма работы.

Занятия организованны по группам, в одной группе занимаются не более 12 человек.

Срок освоения программы – 1 год 144 часа

Pежим занятий - периодичность и продолжительность занятий 2 раза в неделю по 2 академических часа

1.2. ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ

Цель программы — " КосмоЛаб" заключается в вдохновении и обучении детей в возрасте 13-15 лет фундаментальным принципам физики и космическим технологиям через увлекательные и интерактивные занятия.

Для достижения заявленной цели необходимо решить задачи:

- 1. Обучающие:
- Познакомить обучающихся с фундаментальными принципами физики, включая механику, термодинамику, электромагнетизм гравитацию.
- Познакомить с инженерными аспектами космических технологий, включая разработку и проектирование космических аппаратов, систем поддержки жизнедеятельности и других инновационных решений.
 - формировать навыки конструирования различных приборов и моделей;
- ознакомить с применением физики в различных областях науки, техники и промышленности;
 - 2. Развивающие:
- развивать у обучающихся элементы изобретательности, технического образного мышления и творческой инициативы.
 - 3. Воспитательные:
 - воспитывать уважение к труду и людям труда;
- формировать чувства коллективизма, качества творческой личности с активной жизненной позицией.

СОДЕРЖАНИЕ ПРОГРАММЫ 1.3.1 УЧЕБНЫЙ ПЛАН 2.1.

$N_{\underline{0}}$	Наименование тем занятий.		ичество час	ОВ			
312		Теория	Практика	Всего			
Введение в Физику и Космос (16 часов)							
1	Основы физики: Механика и движение	2	2	4			
2.	Основы физики: Термодинамика и теплопередача	2	2	4			
3.	Основы физики: Электромагнетизм и электричество	2	2	4			
4	Основы физики: Гравитация и космические силы	2	2	4			
	Звезды и Галактики (16 часов)						
5	Строение звезд и их эволюция	2	2	4			
6	Галактики и их свойства	2	2	4			
7	Черные дыры и другие таинственные объекты	2	2	4			
8	Космические явления: вспышки, гравитационные волны	2	2	4			
	Астрономия и Навигация (16 часо	ов)					
9	Основы астрономии и наблюдение за небесными телами	2	2	4			
10	Солнечная система и планеты	2	2	4			
11	Навигация в космосе: звездные карты и ориентация	2	2	4			
12	Спутники и космические аппараты	2	2	4			
	Основы Космических Технологий (16 часов)						
13	Ракетостроение и принципы полета	2	2	4			
14	Жизнь на космической станции: системы поддержки	2	2	4			
15	Эксплорация Марса и других планет	2	2	4			
16	Космические исследования искусственного интеллекта	2	2	4			
	Инженерия и Проектирование (16 ча	асов)		•			
17	Основы инженерии и принципы проектирования	2	2	4			
18	Разработка космических аппаратов: от идеи до испытаний	2	2	4			
19	Энергетика в космосе: солнечные батареи и другие источники	2	2	4			
20	Инновации в космической инженерии	2	2	4			
	Визуализация и Виртуальная Реальность (16 часов)						
21	3D-моделирование и визуализация космических объектов	2	2	4			
22	Виртуальная реальность в исследованиях космоса		2	4			
23	Интерактивные симуляции физических законов	2	2	4			
24	Обучение подходу к созданию презентаций	2	2	4			
	Групповые Проекты и Практические Эксперим						
25	Работа в группах: проектирование космических	2	6	8			

No	Наименование тем занятий.	Количество часов			
112	паименование тем занятии.		Практика	Всего	
	миссий				
26	26 Эксперименты в лаборатории: измерения и демонстрации 2 6				
27	Подготовка и представление проектов	6 6 12			
28	Обзор инновационных идей и технологий в космосе	6	6	12	
Проекты (8 часов)					
20	Итоговая работа проекта	0	O	0	
29	riioioban paoota iipoekta	U	8	8	

1.3.2 СОДЕРЖАНИЕ УЧЕБНОГО ПЛАНА

1. Введение в Физику и Космос (16 часов)

Основы физики:

Теория: Введение в основные принципы механики, изучение движения тел и законы сохранения энергии.

Практика: Эксперименты с измерением скорости, массы и силы.

2. Звезды и Галактики (16 часов)

Строение звезд:

Теория: Разбор строения звезд, процессов в их ядрах и жизненного цикла звезд

Теория: Исследование солнечной системы и особенностей каждой планеты.

Галактики и свойства:

Теория: Понимание различных типов галактик, их структуры и влияния гравитации в космосе.

Практика: Наблюдения за галактиками с использованием телескопов.

Черные дыры:

Теория: Объяснение происхождения черных дыр, их свойств и влияния на окружающее пространство.

Практика: Моделирование черных дыр в виртуальной среде.

3. Астрономия и Навигация (16 часов)

Основы астрономии и наблюдение:

Теория: Знакомство с базовыми понятиями астрономии, методами наблюдения и средствами исследования.

Практика: Построение простых астрономических инструментов.

Солнечная система и планеты:

Теория: Исследование структуры и свойств Солнечной системы, изучение планет и их особенностей.

Теория: Освоение методов навигации в космосе, использование звездных карт и инструментов.

Навигация в космосе:

Теория: Рассмотрение принципов и методов навигации в открытом космосе.

Практика: Разработка плана космической миссии с учетом навигационных аспектов.

Спутники и космические аппараты:

Теория: Изучение различных типов космических аппаратов, их назначения и технологий

Практика: Проектирование мини-модели космического аппарата.

4. Основы Космических Технологий (16 часов)

Ракетостроение и полет:

Теория: Основы конструкции ракет, принципы их работы и физика полета в космосе.

Практика: Исследование технологий поддержки жизнедеятельности на космической станции.

Жизнь на космической станции:

Теория: Погружение в тему эксплорации Марса, изучение планетарных исследований и возможных миссий.

Практика: Проектирование собственной миссии на Марс.

Эксплорация Марса:

Теория: Рассмотрение принципов и технологий искусственного интеллекта в космических исследованиях.

Практика: Создание программы с использованием ИИ для анализа данных из космоса.

Космические исследования ИИ:

Теория: Ознакомление с основами инженерии и принципами проектирования космических технологий.

Теория: Обзор последних инноваций в области космической инженерии.

5. Инженерия и Проектирование (16 часов)

Основы инженерии и принципы проектирования:

Теория: Понимание ключевых принципов инженерии и их роль в разработке космических технологий.

Практика: Упражнения по применению инженерных подходов к решению задач.

Разработка космических аппаратов: от идеи до испытаний:

Теория: Этапы разработки космических аппаратов, от проектирования до испытаний в условиях космоса.

Практика: Создание концепции и первоначального дизайна космического аппарата.

Энергетика в космосе: солнечные батареи и другие источники:

Теория: Рассмотрение принципов работы солнечных батарей и других источников энергии в космосе.

Теория: Обзор новых технологий в области космической энергетики.

Инновации в космической инженерии:

Теория: Анализ примеров инновационных решений и технологий, применяемых в современной космической инженерии.

Практика: Обсуждение потенциала внедрения инноваций в будущих космических проектах.

6. Визуализация и Виртуальная Реальность (16 часов)

3D-моделирование и визуализация космических объектов:

Теория: Обучение основам создания 3D-моделей космических объектов и их визуализации.

Практика: Создание 3D-моделей планет, галактик и космических аппаратов.

Виртуальная реальность в исследованиях космоса:

Теория: Рассмотрение возможностей применения виртуальной реальности в космических исследованиях.

Практика: Эксперименты с использованием виртуальной реальности для моделирования условий космоса.

Интерактивные симуляции физических законов:

Теория: Создание интерактивных симуляций, демонстрирующих физические законы в космосе.

Практика: Разработка собственных симуляций и экспериментов.

Обучение подходу к созданию презентаций:

Теория: Обучение навыкам эффективного создания и проведения презентаций в области физики и космоса.

Практика: Подготовка и проведение презентаций с использованием визуализаций и интерактивных элементов.

7. Групповые Проекты и Практические Эксперименты (40 часов)

Работа в группах: проектирование космических миссий:

Теория: Работа над структурой презентации проекта, включая визуализацию и обоснование решений.

Практика: Подготовка групповых презентаций и демонстрация результатов проектов.

Эксперименты в лаборатории: измерения и демонстрации:

Теория: Обзор основных методов измерений в физике и космической науке.

Практика: Проведение лабораторных экспериментов и измерений.

Подготовка и представление проектов:

Теория: Подготовка презентаций проектов и обоснование принятых решений.

Практика: Презентация готовых проектов перед аудиторией.

Обзор инновационных идей и технологий в космосе:

Теория: Анализ современных и будущих инновационных идей, и технологий в области космических исследований.

Практика: Обсуждение потенциала внедрения инноваций в будущих космических проектах.

8. Проекты (8 часов)

Итоговая работа проекта:

Практика: Создание проектов космической отросли.

1.4 ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Обучающиеся к концу обучения должны

Знать:

1. Физика и Космос:

Полное понимание основ механики, термодинамики, электромагнетизма и гравитации.

Глубокие знания о строении звезд, эволюции галактик и особенностях черных дыр.

2. Навигация и Астрономия:

Уверенное использование астрономических методов навигации и отличное знание структуры Солнечной системы.

Обширные знания о планетах, галактиках и методах наблюдения за ними.

3. Космические Технологии:

Глубокие знания принципов ракетостроения и ключевых технологий поддержки жизни в космосе.

Всестороннее понимание работы солнечных батарей и их роль в энергетике космических миссий.

Уметь:

1. Эксперименты и Исследования:

Навык проведения экспериментов по измерению физических величин.

Способность к анализу и интерпретации результатов научных исследований.

2. Проектирование и Инженерия:

Умение разрабатывать концепции и проектировать космические миссии.

Навык создания прототипов и моделей космических аппаратов.

3. Виртуальная Реальность:

Опыт работы с виртуальной реальностью для симуляции космических условий.

Способность создавать интерактивные симуляции физических законов в космосе.

4. Командная Работа:

Навык эффективной работы в группе при разработке проектов и решении задач. Способность к эффективному общению и взаимодействию с членами команды.

5. Презентации и Общение:

Навык подготовки и проведения убедительных презентаций перед аудиторией. Умение аргументировать свои идеи и представлять результаты исследований.

6. Исследовательская Активность:

Способность проводить независимые исследования в области физики и космоса.

Аналитические навыки при изучении новых технологий и научных идей в космической области.

II. КОМПЕКС ОРГАНИЗАЦИОННО ПЕДАГОГИЧЕСКИХ УСЛОВИЙ РЕАЛИЗАЦИИ ПРОГРАММЫ

2.1 КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Количество учебных часов на учебный год: 144 часа

Учебный график первого года обучения рассчитан на 36 учебных недель. Занятия по программе проводятся с сентября (второй и последующие года обучения) с 10 сентября (первый год обучения) по 31 мая, каждого учебного года, включая каникулярное время, кроме зимних каникул (праздничных дней)

Занятия проводятся в соответствии с календарно-учебным графиком

2.2. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Методическое и дидактическое обеспечение:

- методические разработки, методические указания и рекомендации к практическим занятиям;
 - учебная, методическая, дополнительная, специальная литература;
 - развивающие и диагностические материалы: тестовые задания, викторины;
 - дидактические материалы,
 - иллюстрации; фотографии, чертежи и схемы оборудования
 - раздаточный материал.

Для реализации программы необходимы следующие оборудование и материалы:

Компьютеры и ноутбуки:

Для доступа к виртуальной реальности, интерактивным симуляциям, онлайнресурсам и программному обеспечению.

Виртуальная реальность (VR) оборудование:

VR-очки, контроллеры и соответствующее программное обеспечение для создания виртуальных космических сред.

Лабораторное оборудование:

Опытное оборудование для проведения физических экспериментов и демонстраций в лаборатории.

Интернет-ресурсы:

Доступ к онлайн-базам данных, информационным ресурсам и инструментам для научных исследований в области космофизики.

2.3. ФОРМЫ АТТЕСТАЦИИ/КОНТРОЛЯ

Формы аттестации/контроля — разрабатываются и обосновываются для определения результативности усвоения программы, отражают цели и задачи программы, перечисляются согласно учебно-тематическому плану (Тестирование, беседа)

Наиболее подходящая форма оценки – является тестирование.

В течение всего периода обучения педагог ведет индивидуальное наблюдение за творческим развитием каждого обучаемого.

Механизм оценки результатов освоения программы.

Контроль знаний, умений и навыков обучающихся проводится 3 раза в учебный год.

Входящий контроль: с 15 по 25 сентября.

Промежуточная аттестация с 20 по 26 декабря.

Итоговая диагностика с 12 по 19 мая.

Контроль обучающихся проводится в следующих формах: контрольное занятие, итоговое занятие.

Методы контроля: опрос, наблюдение, обсуждение, анализ, самоконтроль, взаимоконтроль, оценивание, индивидуальный контроль, собеседование, тестирование

Диагностирование с помощью тестовых заданий позволяет получить наиболее полную картину усвоения программного материала. Тестовые задания, где представлены различные варианты ответов, лучше способствуют возможности ребенка применить свои умения и знания, так как содержат элемент игры и вызывают меньше стрессовых ситуаций.

Тестирование проводится в условиях занятия. Все обучающиеся выполняют задания одновременно. Форма выполнения — индивидуальная. Перед проведением тестирования проводится инструктаж по выполнению заданий. Максимальное время выполнения заданий — 45 минут.

Определены критерии и разработаны показатели, которые позволяют по всем параметрам оценить уровень усвоения образовательной программы.

2.4. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочные материалы — пакет диагностических методик, позволяющих определить достижение обучающимися планируемых результатов

Диагностика по у/о «КосмоЛаб»

Тестовые задания

Описание материала: предлагаемый материал предназначен для педагога дополнительного образования учебного объединения «КосмоЛаб».

Цель: определение успешности и эффективности освоения программы дополнительного образования «Космолаб»

Образец текстового задания

1. Что из следующего не является основой механики, изучаемой в программе?

- а) Электромагнетизм
- б) Гравитация
- в) Термодинамика
- г) Механика

2. Какие технологии являются ключевыми в области ракетостроения?

- а) Исследование черных дыр
- б) Энергия от солнечных батарей
- в) Искусственный интеллект в космосе

- г) Ракетные двигатели
- 3. Какие объекты изучаются в астрономии программы "КосмоЛаб"?
- а) Электроны и протоны
- б) Звезды и галактики
- в) Молекулы воды на Земле
- г) Тектонические плиты
- 4. Что представляет собой черная дыра?
- а) Массивная звезда
- б) Ракета для космических полетов
- в) Область с повышенной солнечной активностью
- г) Область с высокой гравитацией, из которой ничто не может уйти
- 5. Какова роль солнечных батарей в космических миссиях?
- а) Создание искусственного интеллекта
- б) Поддержание жизнедеятельности на космических станциях
- в) Источник энергии для космических аппаратов
- г) Спутниковая навигация в космосе

6. Что такое астрономическая навигация?

- а) Исследование космических технологий
- б) Определение местоположения с использованием астрономических методов
- в) Создание виртуальных реальностей в космосе
- г) Исследование земных ресурсов

7. Какие технологии обеспечивают поддержку жизни в космосе?

- а) Искусственный интеллект
- б) Биологические системы очистки воды и воздуха
- в) Разработка виртуальных миров
- г) Солнечные батареи

8. Что является основным источником энергии в космических аппаратах?

- а) Кинетическая энергия
- б) Ядерный реактор
- в) Солнечные батареи
- г) Гравитационная энергия

9. Какие методы используются для наблюдения за звездами и галактиками?

- а) Микроскопия
- б) Солнечные батареи
- в) Астрономические телескопы и обсерватории
- г) Спутниковая навигация

10. Каково предназначение черных дыр в космической науке?

- а) Источник космической энергии
- б) Поглощение света в космосе
- в) Развитие новых технологий
- г) Изучение свойств гравитационных явлений

2.5. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Современные образовательные технологии, применяемые при реализации программы:

Московкина Е.Г «Олимпиадные задачи по физике» Пособие содержит задачи по всем разделам физики

Технология индивидуализации обучения (адаптивная) (Инге Унт, В.Д. Шадриков) — такая технология обучения, при которой индивидуальный подход и индивидуальная форма обучения являются приоритетными. Индивидуальный подход как принцип обучения осуществляется в определенной мере во многих технологиях, поэтому ее считают проникающей технологией.

Обучение осуществляется путем общения в динамических группах, когда каждый учит каждого (А.Г. Ривин, В.К. Дьяченко) Технология коллективного взаимообучения. Обучение есть общение обучающих и обучаемых.

В дополнительном образовании широко используется Педагогика сотрудничества (С.Т. Шацкий, В.А. Сухомлинский, Л.В. Занков, И.П. Иванов, Е.Н. Ильин, Г К Селевко и др.)

В рамках исследовательского подхода обучение ведется с опорой на непосредственный опыт учащихся, его расширение в ходе активного освоения мира. Характерной чертой дидактических поисков в этом направлении является учебная дискуссия, вовлечение детей в которую связано с формированием коммуникативной культуры.

С этой целью в дополнительном образовании применяется специальная коммуникативная технология обучения, то есть обучение на основе общения. Участники обучения — педагог — ребенок. Отношения между ними основаны на сотрудничестве и равноправии. Технология коммуникативного обучения разработана болгарским ученым Г. Лозановым и породила много практических вариантов. (Е.И. Пассов, Г.А. Китайгородская, В.Л. Скалкин и др.).

Игровые технологии (Пидкасистый П.И., Эльконин Д.Б.) обладают средствами, активизирующими и интенсифицирующими деятельность учащихся. В их основу положена педагогическая игра как основной вид деятельности, направленный на усвоение общественного опыта.

2.6. ВОСПИТАТЕЛЬНАЯ РАБОТА

Мероприятие	Сроки	Ответственный
«Всероссийский урок		Маргаритов М.А
«Экология и		
энергосбережение», в		
рамках Всероссийского	Сентябрь	
фестиваля		
энергосбережения		
#ВместеЯрче		
День солидарности в борьбе	Сентябрь	Маргаритов М.А
с терроризмом	Сснтяорь	
Международный День мира		Маргаритов М.А
(День прекращения огня и	Сентябрь	
отказа от насилия)		
День учителя	Октябрь	Маргаритов М.А
День пожилых людей	Октябрь	Маргаритов М.А
День Народного единства	Ноябрь	Маргаритов М.А
День Матери	Ноябрь	Маргаритов М.А
Международный день	Ноябрь	Маргаритов М.А
толерантности	адокогт	
Мирный атом	Ноябрь	Маргаритов М.А

День Конституции России	Декабрь	Маргаритов М.А
День Защитника Отечества	Февраль	Маргаритов М.А
День Российской науки	Февраль	Маргаритов М.А
Международный женский день	Март	Маргаритов М.А
Единый день профориентации	Март	Маргаритов М.А
Всемирный День здоровья	Апрель	Маргаритов М.А
День Победы	Май	Маргаритов М.А
День весны и труда	Май	Маргаритов М.А

2.7. РАБОТА С РОДИТЕЛЯМИ

Мероприятие	Сроки	Ответственный
Родительское собрание	Сентябрь	Маргаритов М.А
Родительское собрание	Декабрь	Маргаритов М.А
Родительское собрание	Май	Маргаритов М.А

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

Литература для педагога:

- 1. Физика звезд и галактик: учебное пособие / Д. Иванов, А. Смирнов, Е. Петров. М.: Издательство "Космическая Энциклопедия", 2022.
- 2. Космическая астрономия: введение и практика / О. Николаев, И. Семенова, В. Григорьев. СПб.: Наука и Техника, 2019.
- 3. Введение в ракетостроение и космическую технику: учебник / В. Петров, А. Иванов, Н. Сидоров. М.: Техно-Пресс, 2018.
- 4. Физика космоса и астрофизика: учебное пособие / К. Морозов, Л. Соловьев, Е. Лисова. СПб.: Академия Космоса, 2020.
- 5. Космическая инженерия и технологии: практикум / Г. Степанов, И. Попов, А. Кузнецов. М.: Технический Прогресс, 2018.
- 6. Физика солнечных батарей: теория и практика / Л. Зайцев, И. Борисов, А. Козлов. М.: Энергия Солнца, 2018.
- 7. Основы астронавтики: учебник / А. Гагарин, С. Терешкова, Ю. Гагарин. СПб.: Космическая Школа, 2018.
- 8. Космическая физика: современные методы исследования / Н. Ракеткин, А. Звездочкин, Г. Гравитов. М.: Наука и Образование, 2019.

Литература для обучающихся:

- 1. Физика звезд и галактик: учебное пособие". Авторы: Д. Иванов, А. Смирнов, Е. Петров. Издательство: "Космическая Энциклопедия". Год издания: 2022.
 - 2. "Введение в ракетостроение и космическую технику: учебник" Авторы: В. Петров, А. Иванов, Н. Сидоров. Издательство: Техно-Пресс. Год издания: 2018.
- 3. "Основы астронавтики: учебник" Авторы: А. Гагарин, С. Терешкова, Ю. Гагарин. Издательство: Космическая Школа. Год издания: 2019.

ПРИЛОЖЕНИЕ 1

Календарный учебный график реализации программы «КосмоЛаб» на 2024 – 2025 учебный год

Место проведения - КЮТ

				место проведения - кто т
№	Дата проведения	Кол-во часов	Тема занятия	Форма контроля
1	Сентябрь	2	Основы физики: Механика и движение	Беседа
2	Сентябрь	2	Основы физики: Механика и движение	Беседа
3	Сентябрь	2	Основы физики: Термодинамика и теплопередача	Беседа, практическая работа
4	Сентябрь	2	Основы физики: Термодинамика и теплопередача	Беседа, практическая работа
5	Сентябрь	2	Основы физики: Электромагнетизм и электричество	Практическая работа
6	Сентябрь	2	Основы физики: Электромагнетизм и электричество	Беседа, практическая работа
7	Сентябрь	2	Основы физики: Гравитация и космические силы	Практическая работа
8	Сентябрь	2	Основы физики: Гравитация и космические силы	Практическая работа
9	Октябрь	2	Строение звезд и их эволюция	Практическая работа
10	Октябрь	2	Строение звезд и их эволюция	Беседа, практическая работа
11	Октябрь	2	Галактики и их свойства	Практическая работа
12	Октябрь	2	Галактики и их свойства	Беседа, практическая работа
13	Октябрь	2	Черные дыры и другие таинственные объекты	Практическая работа
14	Октябрь	2	Черные дыры и другие таинственные объекты	Практическая работа
15	Октябрь	2	Космические явления: вспышки, гравитационные волны	Практическая работа
16	Октябрь	2	Космические явления: вспышки, гравитационные волны	Практическая работа
17	Ноябрь	2	Основы астрономии и наблюдение за небесными телами	Беседа, практическая работа
18	Ноябрь	2	Основы астрономии и наблюдение за небесными телами	Практическая работа
19	Ноябрь	2	Солнечная система и планеты	Беседа, практическая работа
20	Ноябрь	2	Солнечная система и планеты	Практическая работа
21	Ноябрь	2	Навигация в космосе: звездные карты и ориентация	Практическая 21работа
22	Ноябрь	2	Навигация в космосе: звездные карты и ориентация	Практическая работа

No	Дата проведения	Кол-во часов	Тема занятия	Форма контроля
23	Ноябрь	2	Спутники и космические аппараты	Беседа, практическая работа
24	Ноябрь	2	Спутники и космические аппараты	Беседа, практическая работа
25	Декабрь	2	Ракетостроение и принципы полета	Практическая работа
26	Декабрь	2	Ракетостроение и принципы полета	Беседа, практическая работа
27	Декабрь	2	Жизнь на космической станции: системы поддержки	Практическая работа
28	Декабрь	2	Жизнь на космической станции: системы поддержки	Практическая работа
29	Декабрь	2	Эксплорация Марса и других планет	Практическая работа
30	Декабрь	2	Эксплорация Марса и других планет	Беседа, практическая работа
31	Декабрь	2	Космические исследования искусственного интеллекта	Беседа, тестирование
32	Декабрь	2	Космические исследования искусственного интеллекта	Беседа, практическая работа
33	Январь	2	Основы инженерии и принципы проектирования	Беседа, практическая работа
34	Январь	2	Основы инженерии и принципы проектирования	Беседа, практическая работа
35	Январь	2	Разработка космических аппаратов: от идеи до испытаний	Практическая работа
36	Январь	2	Разработка космических аппаратов: от идеи до испытаний	Беседа, практическая работа
37	Январь	2	Энергетика в космосе: солнечные батареи и другие источники	Практическая работа
38	Январь	2	Энергетика в космосе: солнечные батареи и другие источники	Практическая работа
39	Январь	2	Инновации в космической инженерии	Практическая работа
40	Январь	2	Инновации в космической инженерии	Беседа, практическая работа
41	Февраль	2	3D-моделирование и визуализация космических объектов	Практическая
42	Февраль	2	3D-моделирование и визуализация космических объектов	Беседа, практическая работа
43	Февраль	2	Виртуальная реальность в исследованиях космоса	Практическая работа
44	Февраль	2	Виртуальная реальность в исследованиях космоса	Практическая работа

No	Дата проведения	Кол-во часов	Тема занятия	Форма контроля
45	Февраль	2	Интерактивные симуляции физических законов	Практическая работа
46	Февраль	2	Интерактивные симуляции физических законов	Беседа, практическая работа
47	Февраль	2	Обучение подходу к созданию презентаций	Практическая работа
48	Февраль	2	Обучение подходу к созданию презентаций	Беседа, практическая работа
49	Март	2	Работа в группах: проектирование космических миссий	Практическая работа
50	Март	2	Работа в группах: проектирование космических миссий	Практическая работа
51	Март	2	Работа в группах: проектирование космических миссий	Практическая работа
52	Март	2	Работа в группах: проектирование космических миссий	Беседа, практическая работа
53	Март	2	Эксперименты в лаборатории: измерения и демонстрации	Беседа, практическая работа
54	Март	2	Эксперименты в лаборатории: измерения и демонстрации	Практическая работа
55	Март	2	Эксперименты в лаборатории: измерения и демонстрации	Беседа, практическая работа
56	Март	2	Эксперименты в лаборатории: измерения и демонстрации	Практическая работа
57	Апрель	2	Подготовка и представление проектов	Практическая работа
58	Апрель	2	Подготовка и представление проектов	Практическая работа
59	Апрель	2	Подготовка и представление проектов	Практическая работа
60	Апрель	2	Подготовка и представление проектов	Практическая работа
61	Апрель	2	Подготовка и представление проектов	Практическая работа
62	Апрель	2	Подготовка и представление проектов	Беседа, практическая работа
63	Апрель	2	Обзор инновационных идей и технологий в космосе	Практическая работа
64	Апрель	2	Обзор инновационных идей и технологий в космосе	Практическая работа
65	Май	2	Обзор инновационных идей и технологий в космосе	Практическая работа
66	Май	2	Обзор инновационных идей и технологий в космосе	Практическая работа
67	Май	2	Обзор инновационных идей и технологий в космосе	беседа, практическая работа
68	Май	2	Обзор инновационных идей и технологий в космосе	Практическая 15работа
69	Май	2	Итоговая работа проекта	беседа, практическая работа
70	Май	2	Итоговая работа проекта	Практическая работа

No	Дата проведения	Кол-во часов	Тема занятия	Форма контроля
71	Май	2	Итоговая работа проекта	Практическая работа
72	Май	2	Итоговая работа проекта	Практическая работа
		144		